Higher Prelim Paper 1 2015

	Give 1 mark for each •	Illustration(s) for awarding each mark
1(a)	ans:proof(3 marks)•1process – synthetic division for example	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	 ² completes synthetic division ³ conclusion 	• ² $2 \begin{bmatrix} 2 & 3 & -29 & 30 \\ 4 & 14 & -30 \\ \hline 2 & 7 & -15 & 0 \end{bmatrix}$ • ³ since remainder = 0, (x - 2) is a factor
(b)	ans: $(x-2)(2x-3)(x+5)$ (2 marks) • ¹ finds quotient • ² factorises fully	• ¹ $(x-2)(2x^2+7x-15)$ • ² $(x-2)(2x-3)(x+5)$ [must include $(x-2)$]
2	ans: $x^2 + \frac{1}{r^2}$ (3 marks)	Pegasys Extension Test 2010-11 Q10
	• ¹ substitutes	• $(x - \frac{1}{x})^2 + 2$
	\bullet^2 removes brackets	• ² $x^2 - 2 + \frac{1}{x^2} + 2$
	• ³ states answer	$\bullet^3 \qquad x^2 + \frac{1}{x^2}$
3	ans: $7y - 3x + 13 = 0$ (3 marks) • ¹ finds gradient of given line	• $m = -\frac{7}{3}$ • $m_{perp} = \frac{3}{7}$
	• ² finds perpendicular gradient	• ² $m_{perp} = \frac{3}{7}$
	• ³ substitutes into equation and rearranges	• ³ $y+1 = \frac{3}{7}(x-2)$
4	ans: 1/8(3 marks)•1prepares to differentiate•2differentiates•3subs and evaluates	• $f(x) = \frac{1}{2}x^{-2}$ • $f'(x) = -1x^{-3} = -\frac{1}{x^3}$ • $f'(-2) = -\frac{1}{(-2)^3} = \frac{1}{8}$

	Give 1 mark for each •	Illustration(s) for awarding each mark
5	ans: C_2 or second circle(5 marks) \bullet^1 state centre of C_1 \bullet^2 equates x coordinates to find k \bullet^3 finds radius of C_1 \bullet^4 uses radius formula for R_2 \bullet^5 find R_2 and compare with R_1	SQA 2006 Higher P2 Question 4 • ¹ $C_1 = (3, 4)$ • ² $k = 6$ • ³ $R_1 = 5$ • ⁴ $R_2 = \sqrt{(-3)^2 + (-4)^2 + 12}$ or equivalent • ⁵ $\sqrt{37} > 5$ or C_2
6	ans:graph drawn(3 marks)•1correct shape•2correct image for A annotated•3correct image for B annotated	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
7	ans: 64 (3 marks) \bullet^1 integrates \bullet^2 subs values \bullet^3 evaluates	• ¹ $x^4 - 2x^2$ • ² $[3^4 - 2(3)^2] - [(-1)^4 - 2(-1)^2]$ • ³ 64
8	ans: $p \le -\frac{2}{9}$, $p \ge 2$ (4 marks)•1knows condition for real roots•2calculates discriminant•3strategy for solving•4factorising to answers	• ¹ $b^2 - 4ac \ge 0$ for real roots • ² $(-3p)^2 - (4(4p+1), 1) \ge 0$; $9p^2 - 16p - 4 \ge 0$ • ³ diagram drawn • ⁴ $(9p+2)(p-2) = 0 \implies p \le -\frac{2}{9}$ or $p \ge 2$
9	ans: $a = -4$ (2 marks) • ¹ differentiates and equates to 0 • ² subs and solves for <i>a</i>	• $2x + a = 0$ • $2(2) + a = 0; a = -4$

	Give 1 mark for each •		Illustration(s) for awarding each mark
10(a)	ans: $y = 2x - 1$	(3 marks)	SQA 2006 Higher P1 Question1
	• ¹ finds coordinates of D		• 1 $D = (3,5)$
	• ² finds gradient of BD		• $m_{BD} = \frac{5+5}{3+2} = 2$
	• ³ states equation of BD		• ³ $y-5=2(x-3)$ or equivalent
(b)	ans: $y = -3x + 9$	(3 marks)	
	• ¹ finds gradient of BC		• $m_{BC} = \frac{-2+5}{7+2} = \frac{1}{3}$
	\bullet^2 finds perpendicular gradient		$\bullet^2 m_\perp = -3$
	• ³ finds equation of BC		• ³ $y-12=-3(x+1)$ or equivalent
10(c)	ans: (2,3)	(3 marks)	
	•1 starts solving system of equation	ons	• $2\mathbf{x} - 1 = -3\mathbf{x} + 9$ or equivalent
	• ² Finds value of x • ³ Finds value of y		• ² $x = 2$ • ³ $y = 3$
11	ans : $p = 0.25$	(4 marks)	
	\bullet^1 set up one equation		$\bullet^1 \qquad 12 = 20\boldsymbol{p} + \boldsymbol{q}$
	\bullet^2 set up second equation		$\bullet^2 10 = 12 \boldsymbol{p} + \boldsymbol{q}$
	 •³ solve for one variable •³ solve for second variable 		• ³ $p = 0.25$
	• ³ solve for second variable		• ⁴ $q = 7$
12(a)	ans: proof	(4 marks)	SQA 2005 Higher P2 Question 2
	• ¹ interpret diagram		• ¹ $\cos p = \frac{8}{17} \sin p = \frac{15}{17}$ stated or implied by •
	\bullet^2 interpret diagram		• ² $\cos q = \frac{8}{10} \sin q = \frac{6}{10}$ same order as • ³
	• ³ expand sin (A + B)		• ³ sin $p \cos q + \cos p \sin q$ explicitly stated
	\bullet^4 substitute and complete		$\bullet^4 \frac{15}{17} \times \frac{8}{10} + \frac{8}{17} \times \frac{6}{10} = \frac{120}{170} + \frac{48}{170} = \frac{168}{170} = \frac{84}{85}$
(b)	ans: $\frac{\sqrt{3}+1}{2\sqrt{2}}$	(3 marks)	
	• ¹ any expression equivalent to since Φ^{1}	in75 ⁰	• $\sin(45+30)^\circ$ or equivalent
	• ² correct exact values		• ² $\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \times \frac{1}{2}$
	\bullet^3 correct answer		$\bullet^3 \frac{\sqrt{3}+1}{2\sqrt{2}}$

	Give 1 mark for each •		Illustration(s) for awarding each mark
13(a) (b)	ans: $a = 2, b = 1, c = -5$ • ¹ find a • ² find b • ³ find c ans: (-1,-5)	(3 marks) (1 mark)	SQA 2006 Higher P1 Question 8 • ¹ $a = 2$ • ² $b = 1$ • ³ $c = -5$
(0)	• ¹ interpret equation of parabola	(1 mark)	• ¹ (-1,-5)
14	 ans: proof 1 equate for intersection 2 use double angle formula 3 factorise 4 process two solutions 5 complete proof 	(5 marks)	SQA 2005 Higher P2 Question 8 • $k \sin 2x = \sin x$ • $k \times 2\sin x \cos x$ • $\sin x = 0$ $\cos x = \frac{1}{2k}$ • $\sin x = 0$ $x = 0, \pi, 2\pi$ ie at O,B and D $\cos x = \frac{1}{2k}$ for A and C Total: 60 marks