\begin{tabular}{|c|c|c|}
\hline \& Give 1 mark for each • \& Illustration(s) for awarding each mark \\
\hline 1(a)

(b) \& \begin{tabular}{l}
ans: proof \\
(3 marks) \\
- ${ }^{1}$ process - synthetic division for example \\
- ${ }^{2}$ completes synthetic division \\
-3 conclusion \\
ans: $\quad(x-2)(2 x-3)(x+5)$ \\
(2 marks) \\
- ${ }^{1}$ finds quotient \\
- ${ }^{2}$ factorises fully

 \&

$$
\begin{aligned}
& \bullet^{1} \\
& \bullet \begin{array}{l|llll}
2 & 2 & 3 & -29 & 30 \\
\bullet & 2 & \begin{array}{cccc}
2 & 3 & -29 & 30 \\
4 & 14 & -30
\end{array} \\
& 2 & 7 & -15 & 0
\end{array}
\end{aligned}
$$ \\

- ${ }^{3}$ since remainder $=0,(x-2)$ is a factor \\
- ${ }^{1}(x-2)\left(2 x^{2}+7 x-15\right)$ \\
$\bullet^{2} \quad(x-2)(2 x-3)(x+5)$ [must include $\left.(x-2)\right]$
\end{tabular} \\

\hline 2 \& | ans: $\quad x^{2}+\frac{1}{x^{2}}$ |
| :--- |
| (3 marks) |
| -1 substitutes |
| - ${ }^{2}$ removes brackets |
| - ${ }^{3}$ states answer | \& | Pegasys Extension Test 2010-11 Q10 |
| :--- |
| - ${ }^{1}\left(x-\frac{1}{x}\right)^{2}+2$ |
| - ${ }^{2} \quad x^{2}-2+\frac{1}{x^{2}}+2$ |
| - $x^{2} \quad x^{2} \frac{1}{x^{2}}$ | \\

\hline 3 \& | ans: $7 y-3 x+13=0$ |
| :--- |
| (3 marks) |
| $\bullet{ }^{1}$ finds gradient of given line |
| - ${ }^{2}$ finds perpendicular gradient |
| - 3 substitutes into equation and rearranges | \& | -1 $m=-\frac{7}{3}$ |
| :--- |
| - ${ }^{2} \quad m_{\text {perp }}=\frac{3}{7}$ |
| -3 $y+1=\frac{3}{7}(x-2)$ | \\

\hline 4 \& | ans: $1 / 8$ |
| :--- |
| (3 marks) |
| - ${ }^{1}$ prepares to differentiate |
| -2 differentiates |
| -3 subs and evaluates | \& | - $\quad f(x)=\frac{1}{2} x^{-2}$ |
| :--- |
| -2 $\quad f^{\prime}(x)=-1 x^{-3}=-\frac{1}{x^{3}}$ |
| - $f^{\prime} \quad f^{\prime}(-2)=-\frac{1}{(-2)^{3}}=\frac{1}{8}$ | \\

\hline
\end{tabular}

	Give 1 mark for each -			Illustration(s) for awarding each mark
5	ans $\bullet{ }^{1}$ $\bullet{ }^{2}$ $\bullet 3$ $\bullet 4$ $\bullet 5$	\boldsymbol{C}_{2} or second circle state centre of \boldsymbol{C}_{1} equates \boldsymbol{x} coordinates to find \boldsymbol{k} finds radius of \boldsymbol{C}_{1} uses radius formula for \boldsymbol{R}_{2} find \boldsymbol{R}_{2} and compare with \boldsymbol{R}_{1}	$\text { (} 5 \text { marks) }$	SQA 2006 Higher P2 Question 4 - ${ }^{1} \quad \boldsymbol{C}_{1}=(3,4)$ - ${ }^{2} \quad k=6$ - $\boldsymbol{R}_{1}=5$ - $4 \quad \boldsymbol{R}_{2}=\sqrt{(-3)^{2}+(-4)^{2}+12}$ or equivalent -5 $\sqrt{37}>5$ or \boldsymbol{C}_{2}
6	$\begin{aligned} & \text { ans } \\ & \bullet^{1} \\ & \bullet^{2} \\ & \bullet^{3} \end{aligned}$	graph drawn correct shape correct image for A annotated correct image for B annotated	(3 marks)	
7	$\begin{aligned} & \text { ans } \\ & \bullet^{1} \\ & \bullet^{2} \\ & \bullet^{3} \end{aligned}$	64 integrates subs values evaluates	(3 marks)	- $x^{4}-2 x^{2}$ - $2 \quad\left[3^{4}-2(3)^{2}\right]-\left[(-1)^{4}-2(-1)^{2}\right]$ - ${ }^{3} 64$
8	$\begin{aligned} & \text { ans } \\ & \bullet^{1} \\ & \bullet^{2} \\ & \bullet^{3} \\ & \bullet^{4} \end{aligned}$	$\boldsymbol{p} \leq-\frac{2}{9}, \quad p \geq \mathbf{2}$ knows condition for real roots calculates discriminant strategy for solving factorising to answers	(4 marks)	- ${ }^{1} b^{2}-4 a c \geq 0$ for real roots $\bullet^{2}(-3 p)^{2}-(4(4 p+1) .1) \geq 0 ; 9 p^{2}-16 p-4 \geq 0$ - ${ }^{3}$ diagram drawn - ${ }^{4}(9 p+2)(p-2)=0 \Rightarrow p \leq-\frac{2}{9}$ or $p \geq 2$
9	ans	$a=-4$ differentiates and equates to 0 subs and solves for a	(2 marks)	- $12 x+a=0$ -2 $2(2)+\mathrm{a}=0 ; a=-4$

	Give 1 mark for each -	Illustration(s) for awarding each mark
10(a) (b) $10(\mathrm{c})$	ans: $y=2 x-1$ - ${ }^{1}$ finds coordinates of D - ${ }^{2}$ finds gradient of BD -3 states equation of BD ans: $y=-3 x+9$ (3 marks) - ${ }^{1}$ finds gradient of BC - ${ }^{2}$ finds perpendicular gradient - 3 finds equation of BC ans: (2,3) (3 marks) - ${ }^{1}$ starts solving system of equations - ${ }^{2}$ Finds value of \boldsymbol{x} -3 Finds value of \boldsymbol{y}	SQA 2006 Higher P1 Question1 - ${ }^{1} \quad D=(3,5)$ - $\boldsymbol{m}_{B D}=\frac{5+5}{3+2}=2$ - ${ }^{3} \boldsymbol{y}-5=2(\boldsymbol{x}-3)$ or equivalent - $\boldsymbol{m}_{B C}=\frac{-2+5}{7+2}=\frac{1}{3}$ - ${ }^{2} \quad \boldsymbol{m}_{\perp}=-3$ - ${ }^{3} \boldsymbol{y}-12=-3(\boldsymbol{x}+1)$ or equivalent - ${ }^{1} 2 x-1=-3 x+9$ or equivalent $\bullet^{2} \quad x=2$ - ${ }^{3} y=3$
11	ans: $\quad p=0.25$ (4 marks) ${ }^{1}$ set up one equation - ${ }^{2}$ set up second equation -3 solve for one variable -3 solve for second variable	- ${ }^{1} \quad 12=20 \boldsymbol{p}+\boldsymbol{q}$ -2 $\quad 10=12 \boldsymbol{p}+\boldsymbol{q}$ - ${ }^{3} \quad \boldsymbol{p}=0.25$ - ${ }^{4} \quad \boldsymbol{q}=7$
12(a) (b)	ans: proof - ${ }^{1}$ interpret diagram - ${ }^{2}$ interpret diagram -3 expand $\sin (\mathrm{A}+\mathrm{B})$ - ${ }^{4}$ substitute and complete ans: $\frac{\sqrt{3}+1}{2 \sqrt{2}}$ (3 marks) -1 any expression equivalent to $\sin 75^{\circ}$ - ${ }^{2}$ correct exact values - ${ }^{3}$ correct answer	SQA 2005 Higher P2 Question 2 ${ }^{1} \quad \cos \boldsymbol{p}=\frac{8}{17} \sin \boldsymbol{p}=\frac{15}{17}$ stated or implied by \bullet^{4} $\bullet^{2} \quad \cos \boldsymbol{q}=\frac{8}{10} \sin \boldsymbol{q}=\frac{6}{10}$ same order as \bullet^{3} $\bullet^{3} \sin \boldsymbol{p} \cos \boldsymbol{q}+\cos \boldsymbol{p} \sin \boldsymbol{q}$ explicitly stated - $4 \quad \frac{15}{17} \times \frac{8}{10}+\frac{8}{17} \times \frac{6}{10}=\frac{120}{170}+\frac{48}{170}=\frac{168}{170}=\frac{84}{85}$ - ${ }^{1} \sin (45+30)^{\circ}$ or equivalent - $2 \quad \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \times \frac{1}{2}$ - $3 \frac{\sqrt{3}+1}{2 \sqrt{2}}$

