Harris Academy

Mathematics

Higher Prelim Examination 2015

Paper 2

Assessing Units 1, 2 and 3
Time allowed - 1 hour 30 minutes

Read carefully

1. Calculators may be used in this paper.
2. Full credit will be given only where the solution contains appropriate working.
3. Answers obtained from readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.

The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

Scalar Product: $\quad \boldsymbol{a} . \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta$, where θ is the angle between \boldsymbol{a} and \boldsymbol{b}. or

$$
\boldsymbol{a} \cdot \boldsymbol{b}=\boldsymbol{a}_{1} \boldsymbol{b}_{1}+\boldsymbol{a}_{2} \boldsymbol{b}_{2}+\boldsymbol{a}_{3} \boldsymbol{b}_{3} \text { where } \boldsymbol{a}=\left(\begin{array}{l}
\mathrm{a}_{1} \\
\mathrm{a}_{2} \\
\mathrm{a}_{3}
\end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{l}
\mathrm{b}_{1} \\
\mathrm{~b}_{2} \\
\mathrm{~b}_{3}
\end{array}\right)
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$ $\cos a x$	$a \cos a x$ $-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

ALL questions should be attempted

1. Prove that the line $y=3-x$ is a tangent to the circle with equation $x^{2}+y^{2}-2 \boldsymbol{x}-12 \boldsymbol{y}+29=0$ and find the point of contact.
2. Solve algebraically the equation

$$
2 \cos 2 \boldsymbol{x}+8 \sin \boldsymbol{x}-5=0 \text { in the interval } 0 \leq \boldsymbol{x} \leq 2 \pi .
$$

3. A scientist studying a large colony of bats in a cave has noticed that the fall in the population over a number of years has followed the recurrence relation $\boldsymbol{U}_{n+1}=0.75 \boldsymbol{U}_{n}+200$, where \boldsymbol{n} is the time in years and 200 is the average number of bats born each year during a concentrated breeding week.
(a) He estimates the colony size at present to be 2100 bats with the breeding week just over. Calculate the estimated bat population in 2 years time immediately before that
years breeding week.
(b) The scientist knows that if in the long term the colony drops, at any time, below 700 individuals it is in serious trouble and will probably be unable to sustain itself. Is this colony in danger of extinction?
Explain your answer with words and appropriate working.
4. Given that $\boldsymbol{f}(\boldsymbol{x})=\frac{\boldsymbol{x}^{3}-3}{\sqrt{\boldsymbol{x}}} ; \boldsymbol{x}>0$, find $f^{\prime}(x)$.
5. Two curves with equations $y=(x-2)^{2}-2$ and $y=2+6 x-x^{2}$ meet at A and B as shown in the diagram.
(a) Calculate the coordinates of A and B.
(b) Find the area between the two curves. i.e the shaded area in the diagram.

$$
y=(x-2)^{2}-2
$$

6. The logo for a bowling club is as shown in the diagram.

Relative to suitable axes the equation of the larger circle is $x^{2}+y^{2}+2 x-4 y-27=0$ and the smaller circle has equation $x^{2}+y^{2}-12 x+10 y+43=0$.

(a) Show that the two circles touch externally at a single point and find the point of contact.
(b) Establish the equation of the common tangent at this point.
7. The diagram shows part of the graph of a function whose equation is of the form $\boldsymbol{y}=\boldsymbol{a} \sin \left(\boldsymbol{b x}{ }^{\circ}\right)+\boldsymbol{c}$.
(a) Write down the values of $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c}. 3
(b) Determine the exact value of the \boldsymbol{x}-coordinate of \mathbf{P}, the point where the graph intersects the \boldsymbol{x}-axis as shown in the diagram.

3

8. A curve has as its derivative $\frac{d y}{d x}=4 x-6 x^{2}$.

Given that the point $(-1,9)$ lies on this curve, express y in terms of x.
9. The diagram below, which is not drawn to scale, shows part of the graph of the curve $y=6 x^{2}-x^{3}$.

(a) Find the coordinates of the point A , the maximum turning point of this curve.
(b) The line through A, with gradient 5, intersects the curve at a further two points, one of which is B.

Find algebraically the coordinates of B.
Your answer must be accompanied with the appropriate working.
10. A rectangle is formed under the graph of $\boldsymbol{y}=6-\boldsymbol{x}^{2}$, as shown in the diagram.

(a) Show that the area A of the rectangle is given by

$$
A(x)=12 x-2 x^{3}
$$

(b) Hence find the value of \boldsymbol{x} which maximises the area of the rectangle, and the corresponding area.
11. The line $\boldsymbol{y}=5 \boldsymbol{x}+\boldsymbol{k}$, where k is a constant, is a tangent to the parabola $\boldsymbol{y}=2 \boldsymbol{x}^{2}+\boldsymbol{x}-5$ Find the value of \boldsymbol{k}.

